Convergence rates in homogenization of p-Laplace equations
نویسندگان
چکیده
منابع مشابه
Fibered nonlinearities for p(x)-Laplace equations
The purpose of this paper is to give some geometric results on the following problem: −div ( α(x)|∇u(X)|p(x)−2∇u(X) ) = f(x, u(X)) in Ω, (1.1) where f = f(x, u) ∈ L∞(Rm×R) is differentiable in u with fu ∈ L∞(R), α ∈ L∞(Rm), with inf Rm α > 0, p ∈ L∞(Rm), with p(x) ≥ 2 for any x ∈ R, and Ω is an open subset of R. Here, u = u(X), with X = (x, y) ∈ R × Rn−m. As well known, the operator in (1.1) co...
متن کاملHomogenization of Cahn – Hilliard - type equations via evolutionary Γ - convergence
In this paper we discuss two approaches to evolutionary Γ-convergence of gradient systems in Hilbert spaces. The formulation of the gradient system is based on two functionals, namely the energy functional and the dissipation potential, which allows us to employ Γ-convergence methods. In the first approach we consider families of uniformly convex energy functionals such that the limit passage o...
متن کاملConvergence Rates for the Stratified Periodic Homogenization Problems
In this paper, we study the convergence rates of homogenization problems for composites with general stratified periodic structure. After introduced auxiliary function, we get the representation formula satisfied by oscillatory solution and homogenized solution. Then we utilize the formula in combination with the asymptotic estimates of Green functions to obtain convergence rates in p L of solu...
متن کاملHigh-Order AFEM for the Laplace-Beltrami Operator: Convergence Rates
We present a new AFEM for the Laplace-Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W 1 ∞ and piecewise in a suitable Besov class embedded in C1,α with α ∈ (0, 1]. The idea is to have the surface sufficiently well resolved in W 1 ∞ relative to the current resolution of the PDE in H1. This gives rise to a conditional contraction property of the PDE...
متن کاملRates of Convergence for Smoluchowski's Coagulation Equations
Abstract We establish nearly optimal rates of convergence to self-similar solutions of Smoluchowski’s coagulation equation with kernels K = 2, x + y, and xy. The method is a simple analogue of the Berry-Esséen theorems in classical probability and requires minimal assumptions on the initial data, namely that of an extra finite moment condition. For each kernel it is shown that the convergence r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2019
ISSN: 1687-2770
DOI: 10.1186/s13661-019-1258-1